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Memory Effects in Dynamical Many-Body Systems:
The Isomnesic (Constant-Memory) Approximation
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Department of Chemistry
University of Rochester
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4 Abstract

Exact numerical solutions of a generalized master equation for a system
involving a temporally localizable memory kernel and a constant one are
presented. Comparison with an isomnesic (constant-memory) approximation, with
the memory kernel reduced to the sum of a local and a constant term,gives
excellent agreement. A Markovian version of the problem is also described and
found to be inherently ambiguous, devoid of significant physical features seen
in the transient regions, but leading to the same steady-state as the isomnesic
approximation.
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I. Introduction

The dynamics of a system of many interacting particles is often treated by

partitioning the system into two or more subsystems, one of which,%, comprises

the degree(s) of freedom of primary interest, while the others, 1 , * , are

reservoirs to which 9 is coupled. No observations are made on the reservoirs,

and the corresponding degrees of freedom are projected out of the equations of

motion. A quantum mechanical generalized master equation (GME) results, and

Invokation of the Born and random-phase approximations generates a set of

coupled Volterra-type integrodifferential equations (VTE)

(t
P s(t) ' dt'[K SS (t-t')Ps,(t') -Kss,(t-t') Ps(t')] I

.S0

"..where Ps(t) is a diagonal matrix element of the projected density operator in

the subspace%, and represents the probability of finding$6 in an eigenstate IS>

of the zero-order sub-Hamiltonian N:

- • 1 S (2)

The kernel functions Kss, (t-t') include temporal correlations between dynamical

variables of the reservoirs.2 The resulting dependence of the state of$ at any

time t upon all previous times t' 5 t, the memory effect, is manifested in the

convolution form of KSS, (t-t'), the memory kernels.3 For most real physical

systems, the form of K precludes an analytic closed-form solution, and often

J4
even step-by-step numerical integration. When numerical solutions using

alternative techniques such as the method of successive approximations are

possible, one is limited to small times. For example, for kernels with some

form of periodicity, a fairly common situation, these times are of the order of
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a few periods, which seldom correspond to macroscopic measurement times. The

solutions are therefore of little use in suggesting or elucidating physical

mechanisms.

The need for numerical solutions has, in the past, been circumvented by

making the Markovian approximation (MA),6'7 namely that the system is amnesic

(has negligible memory). Thus the convolution-type kernels are assumed to be

extremeley localized temporally,

K ss,(t-t') - WSS6(t-t') , (3)

. which is tantamount to assuming that the probability functions are very slowly

varying during the (small) period of time in which KSS,(t) changes

substantially. This approximation is difficult to justify in general, and is in

fact not justified if a locally correct solution is sought. This is because

P (t) must reflect the nature of KSS,(t) itself, and if the latter varies
S

substantially in any time range, so must Ps(t), at least locally In time. What

makes the MA useful is its avowed ability to provide the rough behavior of Ps(t)

over long time periods. Thus on a coarse-grained time scale, the MA is expected

to provide results roughly resembling the exact results.

Not all physical systems admit of the representation of K SS, (t-t') shown In

Eq. (3), an important example being a system resonantly pumped by a continuous-

wave laser and coupled to another reservoir.7 - For this important class of

physical systems the kernels can, under favorable conditions to be described

later, be written as sums of terms such as Eq. (3) and additional constants
* 2

independent of time. The resulting equations of motion are very different from

those obtained using Eq. (3). The differences are quantified andhighlighted in

this work, and it is shown that the results of the exactly-solvable equations

with kernels including the constants provide an excellent

I . . 4 m . . . " °. ° ". ., b . . • . _ . ., - . ..
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representation of the solutions. The MA, on the other hand, is shown to lead to

probability profiles in gross disagreement with the exact results, especially

for the short time scale.

The format of this paper is as follows. In Section II the basic theory is

summarized, and the results of calculations are presented in Section III.

Conclusions are given in Section IV.

II. The Isomnesic (Constant-Memory) Approximation

A system of great current interest that lends itself ideally as a vehicle

for illustrating the various approximations for the memory kernel is an adatom

adsorbed on a solid surface, vibrationally excited by an infrared continuous-

wave laser, and coupled to phonon modes of the solid. 2 '7- The system %is the

adbond, viz, the bond resulting from the interaction of the adatom with the
10

Dhonon-averaged motion of the lattice atoms; the phonons and the laser are two

independent, noninteracting reservoirs i and _k. Quantum theoretical

treatments of this class of systems lead quite generally to a GME and a

corresponding VTE, Eq. (1), with Ps(t) representing the probability of finding

the adbond in the eigenstate IS> of the zero-order adbond Hamiltonian N. The

2
kernels KSs,(t-t') incorporate the influence of the phonons and the laser. We

have partitioned the total Hamiltonian of the system in such a way that the

perturbations which generate the kernels are traceless in their individual

2,10
reservoir subspaces, As a direct consequence, the total kernels separate

into individual subspace kernels,

= (p) + (r) (t),

Kss'(t) =SSt SS, (4)

where K(P)(t) is due to the phonon field alone and K)(t) is due to the laserwher SSS

radiation field alone. Using a one-dimensional model for the solid,

S..............................................
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we have obtained the kernels in closed form and solved them numerically by an

iterative technique5 for times of the order of a few "periods" of KSS,(t).

These periods are dictated by the characteristic frequencies of the phonons and

the adbond (i.e., the Debye frequency WD and the transition frequencies WSS, for

bound states of the Hamiltonian%), and the laser frequency wL all of which are

- 1012 - 114 Hz (1-100 THz). The periods are therefore very small, being -

-12 -1

10 10 s (1-.01 ps); consequently, the solutions of the VTE can be

obtained numerically for times no larger than about 10 ps, which is certainly

insufficient for the description of a physical or chemical process. In order to

obtain solutions for longer times, an analytic solution must be sought.

We begin with the assertion that the physically important situation is one

where the laser frequency and the Debye frequency equal different transition

frequencies wSS' of the adbond.2  For this case KS() Wbecomes a constant

(from the term with (wSSl, = WL) plus oscillating terms which we ignore in the

6( )sense of the rotating-wave approximation. The phonon term, KSS(t), has a

complicated behavior typified by K P(t) in Fig. 1, but we note that it has

appreciable magnitude for times - 2 ps, and almost vanishes subsequently. If

the mesh size of our theoretical experiment is no less than 2 ps, we can treat

K(p)(t) as a delta function, so that, from Eq. (4),

KSS,(t) = nSS , 6(t) + kSS, (5)

where

a d () (t) (6). SS' =  t SS'

0

In Eq. (5), the first term, originating from the coupling of the adbond to the

phonons, is the amnesic or Markovian term, and would lead, in the absence of the

laser term, to the elimination of all memory effects. The second term, due to

64
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the resonant laser coupling, is the isomnesic non-Markovian term, and represents

a constant memory effect all the way back to t-0.

The subsequent treatment is simplified by defining "diagonal" elements 1

and k SS, viz.

S1 SS S SQ (7)

k S - k S (8)

and the notation

k k * S1 Ik5  (9b)

( t) m IKSS,(t)} (9c)

W 1WSSI)(9d)

16 *1 (9e)

P(t) I P S(t)I (9f)

The exact VTE may be written as

(t) - dt' K (t-t')%.E(t') ;(10)

in the isomnesic approximation (IA) it becomes

P (t) k dt' P (t') + Q-P(t) .(1

Formally this can be solved without any further approximations. Differentiating

* . both sides of Eq. (11), we get the second-order differential equation

P(t) -k(t) 92(-P(t) ,(12)

40 -
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whose Laplace transform,

M(s)._I(s) - T(s) , (13)

where

M(s) a k + SOl - s28 , (14)

T(s) I- sP(O) , (15)

andf*(s) is the Laplace transform of P(t), is easily inverted using the
11

Heaviside expansion theorem.

While this effectively eliminates the non-Markovian bottleneck without

recourse to Eq. (3), it is instructive to generate solutions of" a Markovian

version of this class of problems. To do this, we have to make provisions for

(r).localizing KS, in time. This brings to the fore the pervasive issue of time

scales in dynamical many-body systems, our specific question being the relative
to)Ka(p ) (r) fte asradtons

degree of localization ascribable to K and KSS,. If the laser radiation is

localized as a pulse, it can still extend over a period of time much longer than

the extent of K(P)(t). In other words, the delta function representing KS(t)

(r)may be quite different from the delta function representing KSS,(t), and the

former may in fact not really be considered as localized with respect to the

latter. With these provisos In mind, we can proceed to write the Markovian

version of Eqs. (5), (10), (12) and (13):

K(t) m (Q + f) 6(t) (16)

P(t)= W P (t) , (17)

J(S) - u , ('8)

where

f- k , (19)

* * .. * * * * V *
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W- 2 + f , (20)

J(s) - (9 + f ) , (21)

U - - P(O) , (22)

and i represents the actual extent of the laser signal or a variable time

1,6
parameter. Equation (17) is the well-known Pauli master equation (PME).

To summarize the formulation, Eq. (10) is the exact GME with a convolution

type kernel which makes solutions dificult for experimental times. If the

kernel can be approximated as the sum of a very sharply peaked function due to

the phonons plus a constant due to the laser (the isomnesic approximation), we

get the simplified GME, Eq. (11), which is still not Markovian but has a

"constant memory" (isomnesic-) term. The resulting second-order differential

equation, Eq. (12), can be solved analytically for arbitrarily long times. If,

on the other hand, memory effects are assumed to be negligible, i.e., with a

kernel highly localized in time, Eq. (3), we get the Markovian limit, namely the

PME, Eq. (17), which is a first-order differential equation and can also be

solved analytically for arbitrarily long times. The nature of the solutions

depends, of course, on the time paramter T in Eq. (19).

III. Results of the Exact, Isomnesic and Markovian Approximations

For a linear-chain model of the solid, the exact kernel function due to

phonons alone, ) involves an expansion over the number of phonons n and the

number of lattice atoms L. For the specific system chosen, the effective

surface potential generates five bound states; we have chosen I01 wD and

13&L - ) S' )/ ; see Eq. (2)]. The phonon kernels, e.g., K0

in Fig. 1, fall off quite rapidly in time and arise almost entirely from the

(n-1, E-I) term.

4. . .

°°. . . . . . . . . . .
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At issue is the validity of the isomnesic and Markovian approximations. We

can examine two aspects of the results, viz. the details of the early transient

behavior, and the long-term steady state. For the Markovian case, we can

further examine the effects of varying i in Eq. (19). The transient behavior

can be compared with exact numerical solutions of Eq. (10), but the steady-state

results of the MA and the IA can only be judged by extrapolation.

While the probability profiles P(t) provide sufficient comparison, the

physical contents of our results are better displayed by the average adbond

energy given by

& (t) = Ps(t)&s , (23)
• S

where S is the energy eigenvalue corresponding to the level ;S> of the

S

effective adbond potential. This provides a simple measure of the chemical

direction of the adbond and a well-defined connection between this exact theory

*' and phenomenological models of such processes.

* -The results obtained by solving Eqs. (10), (12) and (17) for a variety of

situations of physical interest are very consistent, and we present a typical

set of curves in Fig. 2 for early times, t < 5 ps. The exact results are rich

in detail and, to a large degree, follow the variations in K(t). We shall not

* . dwell on the physical contents except to mention the conspicuous absence of the

* simple exponential approach to equilibrium postulated in relaxation time

theories. The results of the IA, while exhibiting the expected loss of the fine0

detail, are seen to chart out the average behavior of P(t) with great accuracy.

Thus, for example, the crossing point of P (t) and P3(t) is reproduced at t -

1.7 ps as compared to the exact crossing point at 2.2 ps, and the difference

P1 (t) - P (t) is seen to follow the exact difference with a similar slight
3
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temporal retardation. The gross oscillations of P(t) are also reproduced

* faithfully. Consequently, we feel confident in our prediction that the steady-

state results of the IA will conform to the exact results very accurately. We

wish to emphasize the significance of this. The IA makes possible the complete

* solution of a GME for arbitrarily long times, when the solution of the exact QG1E

is essentially impossible. The solution of the GME In the IA is no more

* difficult than that of the PME obtained by invoking the MA which, however, gives

- results which differ radically from the exact results in the transient region

-for a wide range of values of i. Figure 3 illustrates the variations of P C t)

-5 5with T in the MA (10 ps 10 ps). The probability profiles are seen to

- be insensitive to increases in i beyond - 10 ps, which corresponds to almost

instantaneous saturation. The apparent insensitivity of P(t) for r < 10-2

seen in Fig. 3 is, of course, misleading, since in this region the P S(t) vary

with time too slowly for the change to be evident In the 20 ps time range of the

plot. Drawn for 2 ns in Fig. J4 [we present only P (t)], the differences become
-23

*more pronounced for T < 102 ps, and the strong dependence of the apparent

"equilibration time" on T emerges clearly. We see no unambiguous way of

- choosing an appropriate value for T. For systems which are known or expected to

* equilibrate very quickly, one could make an ad hoc semiempirical choice Of T to

solve a PME for the steady state. However, if one is interested in the details

of the short-time behavior of the system, one must solve the GME using the IA.

For comparison of the MA with the IA we have chosen T - 1 ps. The resulting

profiles for the MA are shown in Fig. 5, along with our IA results for 20 ps.

The complete absence of oscillatory behavior representing beats of the system

* and of population crossings, and the presence of predominantly exponential

* variation of P(t) representative of a "relaxation time" exhibited by the MA



results of Fig. 5 are not necessarily general features of the solutions of a

PHE. Since the matrices M and J are, in general, asymmetric, both the GME and

the PME can generate oscillatory solutions P(t), contradicting earlier

12
*contentions. However, the total lack of resemblance between the early PME

results and the exact ones for the present case is alarming and raises urgent

and serious questions about the validity of the Markovian approximation, even

for a rough qualitatiave estimate of the early transient behavior of many-body

systems with a nonrandomn force. At best, these results suggest the need for

great caution in using the MA. In retrospect this is not surprising, because

the representation of a time-independent cw laser beam by an ultrashort pulse is

tenuous, whereas that of the very-short-range (in time) phonon correlation by a

delta funiction is quite reasonable.

The results for&(t), shown in Fig. 6 for the exact GME and the IA and in

Fig. 7 for the MA and the IA further support these contentions. The IA

generates an energy profile which, except for a slight temporal retardation is

a low-resolution representation of the exact result. The significant Increase

in the bond energy at the expense of both the laser and the solid is clearly

evident in the IA results of Figs. 2 and 6. The results of the MA are

qualitatively different from the exact and IA results, and describe a monotonic

approach to the steady state. The exact and IA results show actual periodic

energy transfer out of the adbond followed by successive build up due to overall

energy inflow. The apparent correspondence seen in Fig. 7 between the magnitude

of &(t) in the MA and the "base line" about which the results of the exact GME

and the IA oscillate is entirely due to our choice of -r - 1 ps. That no such

correspondence can be expected in general is evident from Fig. 8 showing the

variations of &(t) with T. The steady-state (t+-n) values of P(t) and S(t) in
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the MA have been found to be the same as those obtained with the IA for all

cases considered so far (when the values of r chosen lead to steady states in

* -. the time ranges considered).

• ,IV. Conclusion

Our results for the time evolution of a dynamical many-body system subject

to a variety of forces point out the inadequacies of the Markovian approximation

when the resulting memory kernel is nonlocal in time. As an alternative, we

present the isomnesic approximation which is characterized by a constant memory;

this eliminates the non-Markovian bottleneck associated with the convolution-

type memory kernel in the Volterra-type integrodifferential equation resulting

from the generalized master equation. Closed solutions of the latter are in

excellent agreement with the exact results, in contrast to those of the

Markovian approximation.
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Figure Captions

Fig. 1. The phonon part K (P(t) of the memory kernel.01

Fig. 2. Probability profiles Ps(t) for levels S- 0, 1 and 3 of the adbond.
Solid lines: Exact numerical solutions of the GME; broken lines: closed-
form solutions of the GME with the IA.

Fig. 3. P (t) for the system of Fig. 2 with the MA for a ten-decade range of 1.(i)-Po(t); (B)-P Wt; (C)-P3(t). .

0 1 3

Fig. 4. P 3t) with the MA for 2 ns.

Fig. 5. Comparison of P (t) with the IA (solid lines) and the MA (T-i ps; broken
-,Slines) for S-0, 1 and 3

Fig. 6. Average adbond energy &(t) obtained via the numerical solution of the
exact GME (solid line) and closed-form solution with the IA (broken
line).

Fig. 7. d(t) with the IA (solid line) and the MA (-1 ps; broken line).

Fig. 8. Variation of (t) with T in the MA.

-7
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